Effects of finite-size heavy particles on the turbulent flows in a square duct

نویسندگان

  • Zhao-wu Lin
  • Xue-ming Shao
  • Zhao-sheng Yu
  • Lian-ping Wang
چکیده

A parallel direct-forcing fictitious domain method is applied in fully-resolved numerical simulations of particle-laden turbulent flows in a square duct. The effects of finite-size heavy particles on the mean secondary flow, the mean streamwise velocity, the root-mean-square velocity fluctuation, and the particle concentration distribution are investigated at the friction Reynolds number of 150, the particle volume fraction of 2.36%, the particle diameter of 0.1 duct width, and the Shields number ranging from 1.0 to 0.2. Our results show that the particle sedimentation breaks the up-down symmetry of the mean secondary vortices, and results in a stronger secondary-flow circulation which transports the fluids downward in the bulk center region and upward along the side walls at a low Shields number. This circulation has a significant impact on the distribution of the mean streamwise velocity, whose maximum value occurs in the lower half duct, unlike in the plane channel case. The flow resistance is increased and the turbulence intensity is reduced, as the Shields number is decreased. The particles accumulate preferentially at the face center of the bottom wall, due to the effect of the mean secondary flow. It is observed that the collision model has an important effect on the results, but does not change the results qualitatively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overview of Direct Numerical Simulation of Particle Entrainment in Turbulent Flows

An overview of removal and re-entrainment of particles in turbulent flows is presented. The procedure for the direct numerical simulation (DNS) of the Navier-Stokes equation via a pseudospectral method for simulating the instantaneous fluid velocity field is described. Particle removal mechanisms in turbulent flows in a duct are examined and effects of the near-wall coherent eddies on the parti...

متن کامل

Effects of coupling on turbulent gas-particle boundary layer flows at borderline volume fractions using kinetic theory

This study is concerned with the prediction of particles’ velocity in a dilute turbulent gas-solidboundary layer flow using a fully Eulerian two-fluid model. The closures required for equationsdescribing the particulate phase are derived from the kinetic theory of granular flows. Gas phaseturbulence is modeled by one-equation model and solid phase turbulence by MLH theory. Resultsof one-way and...

متن کامل

Suspensions of finite-size rigid particles in laminar and turbulent flows

Dispersed multiphase flows occur in many biological, engineering and geophysical applications such as fluidized beds, soot particle dispersion and pyroclastic flows. Understanding the behavior of suspensions is a very difficult task. Indeed particles may differ in size, shape, density and stiffness, their concentration varies from one case to another, and the carrier fluid may be quiescent or t...

متن کامل

Simulation of Finite-Size Particles in Turbulent Flows Using the Lattice Boltzmann Method

Particle laden turbulent flows occur in a variety of industrial applications. While the numerical simulation of such flows has seen significant advances in recent years, it still remains a challenging problem. Many studies investigated the rheology of dense suspensions in laminar flows as well as the dynamics of point-particles in turbulence. Here wewill present results on the development of nu...

متن کامل

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017